

परमाणु ऊर्जा शिक्षण संस्था

(परमाणु ऊर्जा विभाग का स्वायत्त निकाय, भारत सरकार) ATOMIC ENERGY EDUCATION SOCIETY

(An autonomous body under Department of Atomic Energy, Govt. of India)

CHAPTER-8 APPLICATIONS OF INTEGRATION MODULE: 2/2e -content

 PREVIOUS KNOWLEDGE
 Knowledge of finding the area bounded by a line and a curve.
 Standard equation of circle, parabola and ellipse .

AREA BETWEEN TWO CURVES

Consider two intersecting curves whose equations are y = f(x) and y = g(x). Let us try to find the area bounded by these two curves. Let the point of intersection of these two curves be x = a and x = b.

Assume that $f(x) \ge g(x)$. For finding the elementary area take an elementary strip with height f(x) -g(x) and width dx. Then if dA denote the elementary area dA = [f(x) -g(x)] dx. Hence total area

$$A = \int_{a}^{b} [f(x) - g(x)] dx$$

$$A = \int_a^b f(x) dx - \int_a^b g(x) dx$$

A = [area bounded by y = f(x), x-axis and the lines x = a, x = b]

- [area bounded by y = g(x), x-axis and the lines x = a, x = b] where $f(x) \ge g(x)$ in [a, b] Consider another case where $f(x) \ge g(x)$ in [a, c] and $f(x) \le g(x)$ in [c, b], where a < c < b (Fig) then the area of the regions bounded by the curves can be written as

Total Area = Area of the region ACBDA + Area of the region BPRQB f(x) > g(x)

Total Area = $\int_{a}^{c} [f(x) - g(x)] dx + \int_{c}^{b} [g(x) - f(x)] dx$

EXAMPLES

Q1. Find the area bounded by the curve $x^2 = 4y$ and the line x = 4y - 2. Solution:

We need to find the area of shaded region. First we find points A and B $x^2 = 4y....(1)$ x = 4y - 2....(2)

From(1) and (2) $(4y-2)^2 = 4y \Rightarrow 16y^2 - 20y + 4 = 0$ $4y^2 - 5y + 1 = 0 \Rightarrow (4y - 1)(y - 1) = 0$ $\Rightarrow y = \frac{1}{4} \text{ or } 1$ Put values of y in eq (2), we get x = -1 and 2 Therefore the points are $A\left(-1,\frac{1}{4}\right)$ and B(2,1). Required shaded area= $\int_{-1}^{2} y \, dx - \int_{-1}^{2} y \, dx$ $= \int_{-1}^{2} \frac{x+2}{4} dx - \int_{-1}^{2} \frac{x^{2}}{4} dx$ $= \frac{1}{4} \int_{-1}^{2} [(x+2) - (x^2)] dx$ $=\frac{1}{4}\left[\left(\frac{x^2}{2}+2x\right)-\left(\frac{x^3}{3}\right)\right]_{-1}^{2}$

$$= \frac{1}{4} \left[\left(6 - \frac{8}{3} \right) - \left(-\frac{3}{2} + \frac{1}{3} \right) \right]$$
$$= \frac{1}{4} \left[\left(\frac{10}{3} \right) - \left(-\frac{7}{6} \right) \right] \quad \Rightarrow \frac{1}{4} \left[\frac{60 + 21}{18} \right] = \frac{1}{4} X \frac{81}{18}$$
$$= \frac{9}{8} \text{ sq units.}$$

Q2.Find the area of the circle $4x^2 + 4y^2 = 9$ which is interior to the parabola $x^2 = 4y$ **Solution:**

Solving the given equation of circle, $4x^2 + 4y^2 = 9$, and parabola, $x^2 = 4y$, we obtain the point of intersection as $B\left(\sqrt{2}, \frac{1}{2}\right)$ and D(figure)

The required area is represented by the shaded area OBCDO. The area is symmetrical about y –axis \therefore Required area = 2 Area OBCO Draw BM perpendicular to OA. Therefore, the coordinates of M are $(\sqrt{2}, 0)$.

Area OBCO = Area OMBCO – Area OMBO

$$= \int_0^{\sqrt{2}} \sqrt{\frac{9-4x^2}{4}} \, dx - \int_0^{\sqrt{2}} \frac{x^2}{4} \, dx$$
$$= \frac{1}{2} \int_0^{\sqrt{2}} \sqrt{9-4x^2} \, dx - \frac{1}{4} \int_0^{\sqrt{2}} x^2 \, dx$$

$$= \frac{1}{4} \left[x\sqrt{9 - 4x^2} + \frac{9}{2} \sin^{-1} \left(\frac{2x}{3}\right) \right]_{0}^{\sqrt{2}} - \frac{1}{4} \left[\frac{x^3}{3} \right]_{0}^{\sqrt{2}}$$

$$= \frac{1}{4} \left[\sqrt{2} + \frac{9}{2} \sin^{-1} \left(\frac{2\sqrt{2}}{3} \right) \right] - \frac{1}{12} 2\sqrt{2}$$

$$= \frac{\sqrt{2}}{4} + \frac{9}{8} \sin^{-1} \left(\frac{2\sqrt{2}}{3} \right) - \frac{\sqrt{2}}{6}$$

$$= \frac{\sqrt{2}}{12} + \frac{9}{8} \sin^{-1} \left(\frac{2\sqrt{2}}{3} \right)$$

$$= \frac{1}{2} \left[\frac{\sqrt{2}}{6} + \frac{9}{4} \sin^{-1} \left(\frac{2\sqrt{2}}{3} \right) \right]$$

∴ Required area = 2 Area OBCO

$$= 2 \times \frac{1}{2} \left[\frac{\sqrt{2}}{6} + \frac{9}{4} \sin^{-1} \left(\frac{2\sqrt{2}}{3} \right) \right]$$

$$= \frac{\sqrt{2}}{6} + \frac{9}{4} \sin^{-1} \left(\frac{2\sqrt{2}}{3} \right)$$
sq.units.

Q3.Find the area bounded by curves $(x - 1)^2 + y^2 = 1$ and $x^2 + y^2 = 1$ Solution:

The area bounded by the curves, $(x - 1)^2 + y^2 = 1$ and $x^2 + y^2 = 1$, is represented by the shaded area. Solving the two equations we get the point of intersection as

A
$$\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$
 and B $\left(\frac{1}{2}, \frac{-\sqrt{3}}{2}\right)$.

The required area is symmetrical about x-axis. \therefore Area OBCAO = 2 × Area OCAO

Join AB, which intersects OC at M, such that AM is perpendicular to OC. The coordinates of M are $\left(\frac{1}{2}, 0\right)$

Area OCAO = Area OMAO + Area MCAM $= \int_0^{\frac{1}{2}} \sqrt{1 - (x - 1)^2} dx + \int_{\frac{1}{2}}^{1} \sqrt{1 - x^2} dx$ $= \left[\frac{x-1}{2}\sqrt{1-(x-1)^2} + \frac{1}{2}\sin^{-1}(x-1)\right]_{0}^{\frac{1}{2}} + \frac{1}{2}\sin^{-1}(x-1)$ $\left[\frac{x}{2}\sqrt{1-x^{2}} + \frac{1}{2}\sin^{-1}x\right]_{\frac{1}{2}}^{1}$ $= \left| \frac{-1}{4} \sqrt{1 - \frac{1}{4} + \frac{1}{2} \sin^{-1} \left(\frac{-1}{2} \right) - \frac{1}{2} \sin^{-1} \left(-1 \right)} \right| + \frac{1}{4} \sin^{-1} \left(-\frac{1}{2} \right) - \frac{1}{4} \sin^{-1} \left(-\frac{1}{2} \right) + \frac{1}{4} \sin^{-1} \left(-\frac{1}{4} \right) +$ $\left|\frac{1}{2}\sin^{-1}(1) - \frac{1}{4}\sqrt{1 - \frac{1}{4} - \frac{1}{2}\sin^{-1}\left(\frac{1}{2}\right)}\right|$ $= \left[\frac{-\sqrt{3}}{8} - \frac{\pi}{12} + \frac{\pi}{4}\right] + \left[\frac{\pi}{4} - \frac{\sqrt{3}}{8} - \frac{\pi}{12}\right] = \frac{-\sqrt{3}}{4} - \frac{\pi}{6} + \frac{\pi}{2}$

$$=\frac{\pi}{3}-\frac{\sqrt{3}}{4}$$

Therefore, required OBCAO = 2 × Area OCAO = $2\left[\frac{\pi}{3} - \frac{\sqrt{3}}{4}\right]$ = $\frac{2\pi}{3} - \frac{\sqrt{3}}{2}$ sq.units

THANK YOU **Prepared by** Mr. D. Krishna PGT, Maths AECS, Jaduguda